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1. A warning first in order to avoid any misunderstanding; quantum 
mechanics is a great triumph of contemporary physics; moreover, it has 
revolutionized our understanding of the external world. Thanks to this 
mechanics, impredictability has become central in our approach to explain 
natural phenomena. I am firmly convinced of this. The statistical analysis 
I am going to present is not intended to show that there is something 
wrong in quantum mechanics. What I want to emphasize is that the 
probabilistic notions used in quantum mechanics deserve, from a founda- 
tional point of' view, a more accurate study than what has been devoted to 
them. 

Probability is the notion with which we try to approach unpredictabil- 
ity. Since the twenties, the notion of probability has assumed a central role 
in quantum mechanics. The early use of this notion was ambiguous. 
Reichenbach (1942) stands in witness of this. This author is well aware of 
the fact that in quantum phenomena "probabilities" interfere, but in spite 
of this he maintains that quantum mechanics does not make use of a 
special theory of probability. Inhis  opinion, notwithstanding the way in 
which probability is determined, the concept of probability used in quan- 
tum mechanics is the traditional one. But less than 10 years later the notion 
of probability used in quantum mechanics lost any ambiguity. The point of 
view of Reichenbach was completely reversed by Feynman (1951). His 
thesis can be summarized as follows: the probability of Heisenberg, 
Schr6dinger, Dirac, and Born is not that of Bernoulli, Bayes, Laplace, and 
Gauss. 
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The problem I address in the present paper is strictly connected with 
the work of Feynman on probability. More precisely the point is this: 
Feynman is right in maintaining that with quantum mechanics something 
new has been introduced into the theory of classical probability, but I 
suspect that the novelty is more related to a broadening of this theory than 
to its falsification. In support of this suspicion, I have the arguments which 
I will present in this paper. In my opinion, these are at least enough to 
recommend a deeper analysis of the relationships between quantum and 
classical probabilities. 

The use of the adjective "classical" needs some comments. In probabil- 
ity theory and statistics, when speaking of classical probability, people refer 
to Laplace's definition: the probability of an event is the ratio of the 
number of favorable cases to the whole number of possible ones. On the 
contrary, in quantum mechanics, when speaking of classical probability, 
people refer to a probability satisfying the addition rule. Feynman says: 
"But more fundamental was the discovery that in nature the laws 
combining probabilities were not those of the classical probability theory of 
Laplace" (Feynman, 1951, p. 533). In other words, whereas the behavior of 
macroscopic objects is ruled by a classical, i.e., additive probability func- 
tion, the behavior of microscopic objects is ruled by a quantum, i.e., 
nonadditive probability function. To make the point clear, I shall use again 
Feynman's words: "the laws of probability which are conventionally ap- 
plied are quite satisfactory in analysing the behavior of the roulette wheel 
but not the behavior of a single electron or a photon of light" (Feynman, 
1951, p. 533). 

In what follows I shall use "classical" in the same sense as intended by 
Feynman. Thus the suspicion I have expressed can be reformulated in this 
way: the laws of quantum probability are an enlargement of the classical 
probability theory. I am not able to make precise what this enlargement 
amounts to. To define exactly in what it consists is another way to pose the 
problem I have in mind. 

2. To the best of my knowledge, Feymnan's analysis of the two-slit 
experiment is the starting point of all reflections concerning the laws of 
probability in quantum mechanics. From a statistical point of view, this 
analysis is lacking in many aspects. The first part of my paper is devoted to 
justify this assertion. 

As usual, I start analyzing the behavior of macroscopic particles like 
bullets. Following Feynman, I imagine an experiment in which a stream of 
bullets is being shot by a machine gun through a wall provided with two 
holes, 1 and 2, to a backstop capable of "absorbing" the bullets. Having 
done this experiment, one ascertains that the frequency of the bullets 
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absorbed at a "point" x of the backstop when both holes are open is the 
sum of the frequencies of the bullets absorbed at "point" x when only hole 
I is open and when only hole 2 is open. Regarding this, Feynman asserts, 
"The chance of arrival at X should be the sum of two parts, Pt, the chance 
of arrival coming through hole 1 plus P2, the chance of arrival coming 
through hole 2" (Feynman, 1951, p. 535). Due to this fact, for Feynman, 
the experiment with bullets ensures that in the case of macroscopic objects 
probabilities add together. The behavior of bullets is ruled by classical 
probability, in particular the addition rule holds. 

This conclusion is too rough. What the experiment with bullets 
corroborates is not the laws of probabilities, but those ruling the theory of 
errors in measurement. For the sake of simplicity, I suppose that the 
distribution of bullets coming from one hole while the other is closed is 
Gaussian. If this is the case, the explanation of the distribution on the 
backstop can be given as follows. As is well known, the point of arrival of 
a bullet is supposed to result from the interaction of an infinite number of 
small and independent causes each of which, should it act alone, will give 
rise to an elementary error. Therefore, the actual point of arrival can be 
assumed to be a random variable being the (limit) sum of an infinite 
sequence of random variables each with expectation equal to zero. Each 
variable of the sequence is related to one of these elementary errors. If we 
suppose that the random variables of the sequence are independent (and 
that their individual variances are small as compared with their sum), then 
the distribution of the normalized sum of these variables is asymptotically 
Gaussian (with zero expectation and unit variance). This is essentially the 
central limit theorem as proved by Lindeberg, but it is not sufficient to 
explain the distribution of bullets. We must suppose the independence of 
random variables describing also bullets. In this way, via the law of large 
numbers, it is possible to explain each of the two Gaussian distributions on 
the backstop when only one hole is open. Finally, supposing independence 
of distributions resulting from arrivals coming from both holes, it is 
possible to assume that the resulting distribution is a linear combination of 
two Gaussians. This explains the distribution on the backstop when both 
holes are open. 

The two-slit experiment performed with e!ementary particles falsifies 
the conjunction of all assumptions we have made. In other words, the fact 
that in the case where these particle frequencies interfere does not only mean 
that the axioms of probability do not hold for them. It means that these 
axioms together with all hypotheses we have assumed in order to explain the 
bullets' frequency do not hold for microscopic objects. I strongly feel that 
the weak part of this set of assumptions is not the addition rule, but the 
various types of independence on which the theory of errors is based. 
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3. In order to make clear what I have in mind, a few words may be 
useful. First of all, I shall carry on with my considerations in the direction 
pointed out by Feynman, i.e., I take elementary particles as the object of 
my analysis as well. Hence I shall take into account random variables 
intended to denote particles of unspecified nature, but I make the experi- 
ment even more simple than usual. I consider only three particles and two 
sites on the backstop. I am interested in which hole the particles go 
through, and from which site they are absorbed. As a consequence, I 
consider three random variables, X1, X2, and X 3, subscripts denoting the 
order in which particles come from a source, say a. These variables can 
assume one of the two attributes of a first family H = {hi, h2} denoting 
holes, and one of the two attributes of a second family S = {sl, s2} 
denoting sites. That is, each random variable can assume as value an 
ordered pair (hi, Sg), j = 1, 2 and g = 1, 2. Hence X i = (hi, sg) asserts that 
the ith particle has gone through the j th  hole and has been absorbed from 
the gth site of the backstop. For the sake of simplicity, I shall write this as 
a conjunction, i.e., Xi  = hj & Xi  = Sg. 

The state (of individuals) descriptions (possibilities) relative to holes 
are 

Xl  = hl & X2 = hl & X3 = hl ,  X1 = h2 & X2 = hl & X3 = hl . . . . .  

X1 = h2 & X2 = h2 & X3 = h2 

Those relative to sites are 

X~ = s~ & X2 = s~ & X3 = s~, X~ = s2 & X2 = sa & X3 = x~ . . . . .  

X l  = s2 & X2 = s2 & X3 = s2 

These are not the possibilities I am interested in. We must consider 
composite possibilities, that is, we must go down and up from H to S and 
vice versa. The result are 64 Q-state descriptions, with the first being 

!~31"= X1 = h i  &X1 =s l  &J~r 2 = hi &X2 =s l  &~ir3 = h i  &X3 =s l  

i.e., s describes the possibility according to which all the three particles 
go through hole 1 and are absorbed from site 1. 

However, we are not only interested in individual descriptions, but we 
are also interested in Q-structure descriptions, i.e., in the number of 
particles which go through holes and are absorbed from the backstop. 
Obviously each Q-structure description is a (possible) frequency distribu- 
tion. One of these is 

~ t  := (3, 0; 3, 0) 
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It says that all particles have gone through hl and have been absorbed from 
s~. Obviously ~3~ is the sole individual description which belongs to ~ ,  
but in general to a Q-structure description there correspond more than one 
Q-state descriptions. 

If we are only interested in the number of particles that have been 
absorbed from the backstop, we can restrict our attention to the structure 
description for sites. One of these descriptions is 

~ l  .'= (3, 0). 

~ 1  belongs to ~ l ,  but there are other Q-structure descriptions belonging 
to ~ .  

The distributions of particles on the backstop are described by struc- 
ture descriptions. It is clear than when we know the probabilities of all 
Q-state descriptions, we can determine the probabilities of structure de- 
scriptions. This is the reason why I am limiting my attention to individual 
descriptions. 

Even if it is often forgotten, the product rule is also a law of classical 
probability theory. Making use of this rule, one can give in full detail the 
probability of ~31 as follows: 

Pr{~3~ } = Pr{X~ = h, IX1 = a} Pr{Xl = si IX, = a, X, = h, } 

x Pr{X~ 

x Pr{X2 

x Pr{X3 

x~ 

x Pr{X~ 

x~ 

=hlIX1 =a ,  X1 = h i , X 1  = S1, X2 = a}  

= s ,  IX1 = a, XI  = h i ,  X1 = sl, X2 = a, X2 = hi } 

=hi[X1 = a, X1 = hl , XI = sl, X2 = a, Xz = hl, 

= s , ,  X3 = a }  

= sl  lXi  = a,  X l  = hi,  Xl = Sl , X2 = a,  X2  = hl  , 

= & , X 3 = a ,  X3=h~}  (1) 

where Xi = a asserts that particle Xi comes from the source a. 
First I will consider a case analogous to that of bullets. It is useful to 

keep in mind that, for example, by the abridgement "dependence upon 
hole" I intend "dependence upon the hole in which the particle and the 
previous ones have gone through." Assuming independence on source, 
holes, and sites, we have 

Pr{~3,  } = Pr{X, = h, IXl = a} Pr{Xl = si IX1 = a} Pr{X2 = hi I/(2 = a} 

x Pr{X2 = s~ IX2 = a} Pr{X3 = h, IX3 = a} Pr{X3 = s, IX3 = a} 
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Put t ing P r { X ~ = h ~ l X i = a } = P r { X i = s l l X i = a } =  1/2, i =  1, 2, and 3, the 
probabi l i ty  of  each Q-s ta te  descript ion becomes  equal  to 1/64. I t  is easy to 
check that  the descript ion on the backs top  when bo th  holes are open is 
equal  to the sum of  bo th  with weights 1/2 when each of  the two holes is 
open alone. 

The  par t icular  case of  (1) we have just  considered is one o f  the 
possible types o f  independence we can suppose to exist a m o n g  particles. 
Always  referring to ~ 3 ~  and as a sort  o f  exercise, I will now consider  some 
cases in which one or more  types of  dependence are dropped.  

(i) Only hole 1 open; dependence upon  source and  site: 

Pr{~331 } = Pr{X~ = s, [X~ = a} Pr{X2 = sl IX1 = a, X~ = sl,  X2 = a} 

x Pr{X 3 = s, lX  1 = a, X1 = s l ,  X2 = a, X2 = s l ,  )(3 = a} 

Notice  that  this is also the probabi l i ty  o f  ~ 3 ,  in the case when,  notwith-  
s tanding bo th  holes are open,  we know tha t  all particles have gone th rough  
hole 1. In  fact, in this case 

Pr{Xi = h, I E} = 1, i = 1, 2, and  3; E whatsoever  

(ii) Only hole 1 open; dependence upon  source of  the considered 
particle: 

P r { ~ 3 ,  } = Pr{X~ = s~ IX1 = a} Pr{X2 = s~ Ix= = a} Pr{X3 = s, I)(3 = a} 

(iii) Both holes open; dependence upon  source and  hole: 

P r ( ~ 3 , )  = Pr{X~ = h~ IX, = a} Pr{X~ = s~ IX~ = a, X, = h~ } 

• Pr{X2 = h, I)(1 = a, X1 = h, ,  X 2 = a} 

• Pr{Xz = s~ [X1 = a, X1 = h,,  Xz = a, X2 = h~} 

x Pr{X3 = h 1 I X ,  : a, X, = hi, X 2 = a, )(2 = h, ,  X 3 = a} 

• Pr{X3 = Sl IX, = a, X, = hi,  )(2 = a, X z = h,,  X 3 = a, )(3 = h, } 

(iv) Both holes open; dependence upon  source and site: 

P r{~3~  } = Pr{X~ = h, IX  , = a} Pr{X~ = s~lX~ = a} 

x Pr{Xz = h~lX, = a, X ,  = s~, X2 = a} 

x Pr{Xz = s, IX, = a, X, = s , ,  )(2 = a} 

• Pr{X3 = h, IX, = a, X l : S l ,  X 2 = a ,  X 2 : s1 ,  X 3 : a} 

• Pr{X 3 = s l Ix1 = a, X, = s , ,  )(2 = a, X2 = s , ,  X 3 = a} 
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(v) Both holes open; dependence upon source and hole; hole destroys 
dependence upon source: 

Pr{~31 } = Pr{X1 = hi [Y l  = a} Pr{X~ = S 1 IX1 ~--- h, } 

x Pr{X2 = h, iX, = h,, X; = s,, X2 = a} 

• Pr{x2  = s, Ix,  = h , ,  x ,  = s , ,  x2  = h, } 

x Pr{X3 = h, IX, = h,, XI = s,, )(2 = hi, X2 = sl, X3 = a} 

x Pr{X3 = sl IX1 = h,, Xl = sl, X2 = h,, X2 = sl, Xs = hi } 

This last case seems to have something in common with the usual approach 
to quantum probability. 

4. The above examples make clear the sense in which the usual 
analysis of the two-slit experiment is too rough. But there is something 
even more significant. In principle we cannot exclude that in the case of 
microscopic objects the distribution on the backstop may be reached by a 
suitable use of dependences affecting probabilities of Q-state descriptions 
involved in the experiment. A simple example wili clarify the point. 

In a famous physical textbook, Feynman et al. (1965) consider two not 
identical Bose particles, x and y scattered from two different scatterers into 
two states 1 and 2 which are nearly the same. (jli> is the amplitude that 
particle i is scattered into state j. The amplitude for the two scatterings, x 
into 1 and y into 2, and the related probability are, respectively, (1 Ix > (2[y > 
and [<l!x>12[<21y>[ 2. The amplitude for x into 2 and y into 1 and the 
related probability are, respectively, (2]x)(1]y)  and ](21x>12](lly>] 2. At 
this point Feynman et al. (1965, p. 4-4) say, "Imagine now we have a pair 
of tiny counters that pick up the two scattered particles. The probability P2 
that they will pick up two particles together is just the sum" 
e2=i<llx>l=l<X[y>12+l<2lx>[21<lly>l When the two states are close 
enough, the two amplitudes <lli> and <21i > will be equal to <s[i>. As a 
result we get P2 = 2[<slx>i [<sly>] = = Pr{x = s) Pr{y = s}. Then the au- 
thors consider two identical Bose particles. In this case the amplitude for 
the two different scatterings can interfere. As a consequence the total 
amplitude of getting a particle in each counter is (1]x ><2[y > + <2Ix ><lly >. 
Again, if the states are close enough, the probability is the absolute square 
of this amplitude, that is 

e2 = I< 1ix ><2If > + <2Ix >( lly >[2 = 4[<six >12 [<s]y >[2 = 2 Pr{x = s } Pr{y = s } 

Feyman et al. remark, "We have the result that it is twice as likely to find 
two identical Bose particles scattered into the same state as you wouM 
calculate assuming the particles were different" (Feynman et al., 1965, p. 4-4). 
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Once again the above statistical analysis is not accurate. Feynman et 
al. implicitly maintain that it is impossible to calculate the probability for 
two identical Bose particles to be in the same state without making 
reference to amplitudes. Resorting to this notion solves the problem, 
showing that the wrong value calculated with classical probabilities is half 
the right one calculated with quantum probabilities. Of course this second 
assertion is right, but an accurate statistical analysis gives the right value 
for classical probability as well. The equality P r { x = s & y = s }  = 
Pr{x = s} Pr{y = s} only holds if x = s and y = s are independent. If  this 
is not the case, then Pr{x = s & y  = s} = Pr{x = s} Pr{y = six = s} holds. 
This is what I have already stressed in Section 3, but there is more to come. 
Nobody can exclude that Pr{y =six =s}  = 2Pr{y =s}  for the simple 
reason that it is really the case. In fact, assuming some suitable conditions 
on the probability function, it is possible to show that (i) Pr{y = s} = k-1 
and (ii) Pr{y = six = s} = 2(k + 1) -1, where k is the number of oscillators 
(states) (Costantini and Garibaldi, 1986). That is, in the case in which 
k ~ 1, Pr{y = six = s} is almost twice Pr{y = s}. Clearly this holds when 
x = s and y = s are positively correlated and the correlation has a well-fixed 
value. 

However, this is not all. It is also possible to show that "the probability 
of counting n Bose particles together is n! greater than we would calculate 
assuming that the particles were all distinguishable" (Feynman et al., 1965, 
p. 4-7) and "the probability of getting a boson, where there are already n, 
is (n + 1) times stronger than it would be if there were none before" 
(Feynman et al., 1964, p. 4-7). More precisely, it is possible to prove that 
the probability of counting n independent particles on the same oscillators 
is k -n  and that the probability of counting n Bose particles together is 

n! 

i.~i. 1)-- (k !) 

The ratio of these probabilities is 

n!k  k k 
k k + l  k + n - 1  

Again if the number of oscillators is much greater than that of the particles, 
this ratio is equal to n!. 2 

What is worth noting in this example is that there is at least an 
eventuality in which classical probability and dependence give the same 

2Of course, in considering a great number of  states we must exercise more caution. For the 
derivation of  this case, i.e., for the derivation of  the grand canonical distribution for bosons, 
fermions, and classical particles, see Costantini and Garibaldi (n.d.). 
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result as quantum probability. Going back to the two-slit experiment, the 
probability of each Q-state description involved in that experiment can be 
determined when we are able to determine the value of 

Pr{X~ =j]E} (2) 

where E is an evidence whatsoever, but this proves to be a hard task. Due 
to the fact that attributes of two families appear in E, the determination of 
(2) is a challenge. Nevertheless, we cannot exclude the possibility, at least 
in principle, that a suitable allotment of value to the probabilities of type 
(2) that are components of the composite probability of a Q-state descrip- 
tion can give rise to the frequency distribution observed to the backstop in 
the two-slit experiment. 

5. What I have said authorizes us to entertain the conviction that 
there is only one notion of probability applicable to both the macroscopic 
and the microscopic world. That is, the difference between classical and 
quantum probability stems from a lot of new probability rules discovered 
by physicists during the study of elementary particles. In other words, with 
Maxwell, Boltzmann, Einstein, Schr6dinger and Dirac, the notion of 
probability was used in a new sphere. This allowed the discovery of a 
number of new statistical methods related to stochastic dependence. Con- 
trary to what happened in other similar cases, this fact has not yet been 
recognized by the scientific community, whose members prefer to refer to a 
new concept, i.e., quantum probability. 

In the work on which my conviction is based (Costantini and 
Garibaldi, 1990, 1993, n.d.), great importance is given to relative (tran- 
sition) probabilities. Contrary to the absolute probabilities which are 
generally used in physics, relative probabilities enable an immediate under- 
standing of dependence. That is, relative probabilities face correlation 
directly, and what is more important, make clear on what typc of notions 
correlations apply. However, this is the case only if the status of the 
probability functions is well defined. The transition probabilities we have 
worked with pertain to the change of state on an oscillator, that is, to the 
probability with which a particle accommodates on an oscillator when the 
structural description of the system of oscillators is well specified. By 
applying these probabilities, we can determine the finite-dimensional distri- 
butions of the stochastic process describing the growth of the total energy 
of the system. This enables the determination of the familiar elementary- 
particle statistics which are probability distributions on possible popula- 
tions (of particles). The thermodynamic limit allows infinity to enter the 
picture. This makes oscillators independent, but it does not destroy the 
dependence of particles. As a result we have a probability distribution on 
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possible states of oscillators which again is a distribution on possible 
populations. Considering various types of excitations, entropy indicates the 
most probable combination, together with Planck's radiation formula. 
Hence in every stage of our derivation, the status of each probability 
distribution we are considering is well defined. 

This remains true when we try to interpret the result of the derivation 
considering it as the sampling distribution of a test of significance. That is, 
in order to check Planck's radiation formula, we must sample the number 
of bosons per oscillator. That is, we should take different values of the 
occupation number per oscillator in independent trials and determine the 
sampling distribution of that number. Nevertheless, this does not take into 
account the enormous velocity at which change occurs at the macroscopic 
level. Due to the fact that the time resolution of the analyzer is much 
greater than the characteristic fluctuation time, an experimental value is 
actually a mean value. It is a value of the (in practice deterministic) 
function giving the mean occupation number of an oscillator. In this 
manner it is possible to make precise what type of correlation produces the 
radiation coming out from a furnace. 

6. In quantum mechanics we do not find such accuracy, as is easy to 
realize taking into account a simple textbook problem (Feynman et al., 
1965, Chapter 8). The example is related to the treatment of the states of 
an ammonia molecule, which essentially amounts to the derivation of Pauli 
spin matrices. The two possible positions of the nitrogen atom are taken as 
the two states I1) and [2) of the molecule. As is well known, the actual 
state of the molecule ~ can be represented by the amplitude to be in ]1 }, 
i.e., C1 = (1[~),  and that to be in [2), i.e., C 2 = (2[qJ). Now I take into 
account the way in which the state ~ varies with time, i.e., 

ih dC1 
- H11C1 + H12C2 

dt 

ih dC2 
dt - Hzl Cl + H22C2 

where h is Planck's constant. The Hij coefficients are the elements of the 
Hamiltonian matrix that, considering an infinitesimal interval of time, I will 
write as transition amplitudes using the notation of the preceding sections, 
but putting A (for amplitude) instead of Pr (for probability). Hence 

H,j = A{X,+a, = ilXt =j}  

where Xt+ at is a random variable describing the ammonia molecule at a 
time t + At, while X, is a random variable describing the ammonia 
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molecule at a time t. These random variables can assume only two values, 
1 and 2, corresponding to states t l )  and ]2). From the amplitudes we can 
get probabilities: 

Pr{X,+ ~, = ilX , =j}  = ]A{X,+ A, = i]X, =j}l 2 

Having fixed the base states and limiting our attention to them, each 
hypothesis upon amplitudes is also a hypothesis upon probabilities. Bear- 
ing this in mind, it is possible to comment on the way in which the values 
of the Hamiltonian matrix are determined. This determination is possible 
thanks to two special hypotheses. 

The first hypothesis, which I call A1, is as follows: Supposing "that 
once the molecule was in the state ]1), there was no chance that it would 
ever get into [2) and vice versa (Feynman et al., 1965, p. 8-12), H12 and H21 
would both be equal to 0. If  this is the case, considering that "for the 
ammonia molecule the two states [1) and [2) have definite symmetry. If  
nature is at all reasonable, the matrix elements H11 and H12 must be equal" 
(Feynman et al., 1965, p. 8-12). 

The second hypothesis, which I call A2, is as follows: After having 
noted that there is some amplitude that the nitrogen will penetrate the 
energy barrier of the three hydrogen atoms, the authors assert, "The 
coefficients H12 and H21 are not really zero. Again, by symmetry, they 
should both be the same- -a t  least in magnitude" (Feynman et al., 1965, p. 
8-12). 

There are no doubts that these are probabilistic hypotheses. His is 
related to an initial transition, where initial is intended to stress the fact 
that the considered transition does not change the state. A1 imposes the 
equality of initial transition probabilities. In deriving the result recalled in 
Section 4, we must consider initial probabilities and impose the equality of 
such probabilities. Regarding a given oscillator, the initial probability is the 
probability with which a particle accommodates on the oscillator when the 
system is in the fundamental state. Initial probabilities and initial transition 
probabilities have someting in common. For this it is worth considering the 
status of initial probabilities. In general, a condition imposing the equidis- 
tribution of the initial probabilities amount to stating 

for each i, Pr{Xi = j}  = k - l ,  j = 1 , . . . ,  k 

that is, the probability that any individual whatsoever bears an attribute of 
a family, if nothing is known about the population, is equal to the inverse 
of the cardinality of the family. Applied to elementary particles, such a 
condition imposes that each initial probability be equal to the inverse of the 
number of oscillators: more explicitly, that the probability to go from the 
fundamental to the first excited state when the system is in the fundamental 
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state is the same for all oscillators. What is worth stressing is that using this 
condition, we are completely clear with respect to which entities we are 
speaking about. 

This is not the case for A1. About what is this hypothesis speaking? 
Does it assert something on an ammonia molecule? Or does it assert 
something about the population of all ammonia molecules? Someone could 
answer that this is a problem of interpretation and that such problems do 
not pertain to formal theories, but this is not a problem of interpretation, 
as easily shown by considering A2. This hypothesis imposes a probabilistic 
property to transitions which are not initial. More exactly, it asserts that 
the amplitude of the transition from I1) to 12) is equal to that from 12) to 
I1). Yet, again, what exactly is A2 speaking about? Is it the transition of an 
ammonia molecule or the transition of a population of such molecules? 

The difficulty I have in mind is the following: A1 and A2 are 
conditions relating to states. But states of what? Oscillators may be 
attributes of particles, but (numbers of) particles may be attributes of 
oscillators. It is not difficult to find in the literature these different meanings 
of the term "state." For example, as we have seen in Section 4, Feynman 
et al. speak of the oscillator as the state of a particle, but in another 
occasion Feynman (1988, Section 1.2) speaks of the number of bosons as 
the state of an oscillator. It follows that one may refer to the probability 
that a particle "bears" an oscillator, but also to the probability that an 
oscillator "bears" m particles. In the first case, we are considering the 
probability that a particle has a property; whereas in the second we are 
speaking of the probability that a population of particles has a property. In 
the first case, one is considering an individual probability; on the contrary, 
in the second, one is considering a universal probability. From a probabilis- 
tic point of view, this difference is far from being trivial. 

7. I have shown that "site" correlation can be taken into account only 
when we are able to formulate hypotheses relative to the probabilistic 
behavior of (generic) particles. On the one hand, I am inclined to think that 
the same holds for the correlation produced from both "hole" and "site" 
together. On the other hand, I suspect that random variables used in 
quantum mechanics speak about populations. If  this is the case, the 
behavior of relative frequencies in the population can darken the correla- 
tion of its members. In other words, a universal probability may hide the 
peculiar properties of the individual probabilities from which it has been 
derived. The derivation of Planck's formula makes it clear how it can 
happen. In fact, the blackbody radiation spectrum does not show any 
interference, but in spite of this it is determined from the boson correlation. 

The consequences of the lack of clarity regarding entities on which we 
are working are far-reaching. The interference we note in the two-slit 
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experiment and similar phenomena are properties of frequency distributions. 
That is, they are properties of populations, not of particles. The interference 
in the two-slit experiment is produced by "hole" and "site" correlation~ 
Undoubtedly this interference is a phenomenon whose complexity is much 
greater than correlation of the blackbody radiation. The correlation ruling 
interferences of this type is surely of a more complex form than that of the 
bosons coming out of a furnace, but it is a correlation related to particles 
whose effects rule the behavior of the related frequency distributions. The 
worst of this is that the original particle correlation can be completely 
distorted by frequencies, i.e., from the way in which particles accommodate 
on "sites." If this is the case, then in order to clarify frequency interferences, 
we must look at particles, not at populations. 

This assertion deserves some comment. When speaking of events H 
and H', we say that probability is an additive function, i.e., 

if E ~ H n H ' =  ~, Pr{HwH']E} = Pr{H]E} + Pr{H']E} 

we are indeed making a lot of assertions. Considering only those more 
familiar, we are speaking of attributes of a family, sets, relative frequencies, 
and individuals (generic or specific). Of course, this is the great advantage 
of the formal approach to theories. But when we want to interpret our 
language, we must define exactly what we are speaking about. 

The superposition of pure states is a principle whose nature is similar 
to that of the addition principle of the classical probability theory. Via 
amplitudes, the superposition principle introduced dependence into classi- 
cal probability theory. Like the addition principle, it works very well. Using 
the superposition principle, physicists have produced a great triumph of 
contemporary physics. The results coming from the applications have 
shown without any doubts its utility in increasing our knowledge of the 
microscopic world, but as in the case of the addition principle, using the 
superposition principle, we do not know exactly what we are speaking 
about. More precisely, in using this principle, are we speaking of specific 
individuals, generic ones, attributes, relative frequencies, or something else? 
I am inclined to think that the foundational difficulties related to quantum 
correlation arise from the ambiguity of the probability function which is 
connected with the superposition principle. I am convinced that if we want 
to clarify the role of quantum dependence, we should be more precise. We 
must work out the probability conditions which rule the statistical behavior 
of elementary particles. 
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